Report: Canadair RJ uncommanded roll on takeoff in icing conditions

April 15, 2011

The CRJ shortly before Stick pusher activates (graphic from AIBN animation)

AIBN Norway published the final report of their investigation into an serious incident involving a Cimber Air Denmark Canadair CRJ200LR Regional Jet, January 2008. During take-off, immediately after lift-off, the aircraft suddenly lost lift on the right wing. The wing dropped, sending the aircraft into an uncontrolled 40-degree bank. The stall protection system activated, and the crew regained control 

On 31 January 2008, at 17:21 hours, a serious aircraft incident took place during take-off from runway 19L at Oslo Airport Gardermoen (ENGM). A Canadair CRJ200LR aircraft with two pilots and two cabin crew members on board suddenly lost lift on the right wing, causing the wing to drop and sending the aircraft into an uncontrolled 40-degree bank immediately after lift-off. The stall protection system activated, and the crew regained control and continued as scheduled to Copenhagen.
The investigation has shown that prescribed de-icing took place 15 minutes prior to departure, and that the wings were not cold-soaked in advance. Weather conditions were temperature at freezing, 15 kt wind and continuous precipitation in the form of aggregated, wet snowflakes. The runway was covered by slush and wet snow which had fallen after the runway had been cleared of snow and sanded 30 minutes earlier. Unintentionally, due to distraction, the system for heating the leading edge of the wing was not switched on prior to take-off. The nose wheel was lifted from the ground at the correct speed, but at a higher than recommended rotation rate.
This incident is one in a number of similar cases. From 2002 to 2008, six CL-600 series aircraft were involved in accidents during winter conditions. The wing of the aircraft type has proven to be especially sensitive to contamination on the leading edge. After the accidents, a number of measures have been implemented to ensure that the wing is clean during take-off, and to ensure that the pilots use the correct take-off technique.

The AIBN believes that the safety measures that have been introduced have not resulted in a definitive solution to the problem. When the de-icing fluid runs off during take-off, it is essential that the leading edge of the wing is heated. On take-off from contaminated runways, spray from the nose wheel will envelop the aircraft’s wing root. This source of contamination hits an aerodynamically critical area on the wing, and comes in addition to the precipitation which can adhere to the wing and disturb the airflow. The AIBN believes that it is not sufficient to depend solely on ”soft” safety barriers such as check lists and memory when the position of one switch (Wing Anti-Ice ON) can be critical to prevent a catastrophic accident during take-off. Technical or physical safety barriers in the form of design changes, automatic systems or automatic warning systems are, in the opinion of the Accident Investigation Board, necessary to obtain adequate reduction in accident risk. Alternatively, more severe restrictions for winter operations with the affected aircraft models must be introduced.

The Accident Investigation Board issues four safety recommendations.

More information:


Report: Pilot’s non-adherence to procedures causes fatal USAF C-17 crash

December 11, 2010

The USAF Accident Investigation Board reported that the July 2010 accident involving a C-17 Globemaster III was caused by “pilot error”.

The McDonnell Douglas C-17A Globemaster III transport plane was operated by the US Air Force 517AS/3rd Wing and was going to practice maneuvers for the upcoming  Arctic Thunder Air Show at Anchorage-Elmendorf AFB, AK (EDF).

The airplane executed a takeoff from runway 06. After the initial climb out and left turn, the pilot executed an aggressive right turn. As the aircraft banked, the stall warning system activated to alert the crew of an impending stall. Instead of implementing stall recovery procedures, the pilot continued the turn as planned, and the aircraft entered a stall from which recovery was not possible. Although the pilot eventually attempted to recover the aircraft, he employed incorrect procedures, and there was not sufficient altitude to regain controlled flight.The aircraft impacted wooded terrain northwest of the airfield, damaged a portion of the Alaskan Railroad, and was destroyed.

The board president found clear and convincing evidence that the cause of the mishap was pilot error. The pilot violated regulatory provisions and multiple flight manual procedures, placing the aircraft outside established flight parameters at an attitude and altitude where recovery was not possible. Furthermore, the copilot and safety observer did not realize the developing dangerous situation and failed to make appropriate inputs. In addition to multiple procedural errors, the board president found sufficient evidence that the crew on the flight deck ignored cautions and warnings and failed to respond to various challenge and reply items. The board also found channelized attention, overconfidence, expectancy, misplaced motivation, procedural guidance, and program oversight substantially contributed to the mishap.


%d bloggers like this: